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Abstract

We describe the complete set of modes of an asymmetric slab waveguide at a fixed real
frequency. We attempt to show that the set of discrete modes (guided and leaky) form a
complete basis and formulate a mode matching method.

1 Motivation

The traditional discussion of waveguide modes and mode matching is unsatisfactory for the
following reasons: 1. The completeness relation for modes deals with radiation modes, which
are in some sense nonphysical due to requiring a planewave source at infinity. 2. The traditional
complete basis of modes involving radiation modes forms a continuum, and it is not obvious how
a finite approximation should select which radiation modes to consider. 3. The guided+radiation
modes do not match what is done numerically when computing modes (guided+leaky). We
argue here that guided+leaky modes are a complete basis in an unusual sense. Although the
leaky modes are non-normalizable in the traditional sense over the entirety of the transverse
cross section of the problem (infinite extent), they are normalizable over any finite interval
containing the waveguide. We show that the discretely infinite set of guided+leaky modes
forms a complete and orthogonal basis for such intervals, and we argue that these modes are both
physically meaningful and satisfy the proper causality requirements. We further demonstrate
the correspondence with traditional numerical mode solving techniques and formulate a mode
matching technique based on this formalism.

2 Governing equations

We begin with the time harmonic (e−iωt) Maxwell equations:

∇×E = iωµH (1)

∇×H = −iωεE (2)

We set the origin of the coordinate system at the center of the slab, with thickness d The x
axis is normal the surfaces of the slab, as shown in Fig. 1 If there is a component of the mode
wavevector in the plane of the slab, we make the z-axis parallel to it, such that we only deal
with the xz-plane. In this case there is a complete decomposition into TE and TM modes where
the y component of the E or H field is nonzero. We consider these two cases separately.
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Figure 1: Slab waveguide schematic.

3 Eigenvalue problem

Combining the Maxwell equations in a homogeneous region,

∇×∇× Ey − ω2µεEy = −∇2
xzEy − ω2µεEy = 0 (3)

ε∇× 1

ε
∇×Hy − ω2µεHy = 0 (4)

The general solution is g(r) = eik·~r where r = (x, z), and such that

k · k = ω2εµ (5)

The general solution can be written in explicit coordinate form as

k = kxx̂+ βẑ (6)

where
k2x + β2 = ω2µε kx, β ∈ C (7)

By phase matching, the solution in each region must have an eiβz dependence so that the general
solution is

Ey(x, z) =


Ce−iα1xeiβz x < 0(
Aeikx +Be−ikx

)
eiβz 0 ≤ x ≤ d

Deiα2(x−d)eiβz x > d
(8)

Therefore, we may collapse the problem into a 1D nonlinear eigenvalue problem. For the TE
case, [

d2

dx2
+ ω2µε0

]
Ey = β2Ey for 0 < x < d (9)

dEy
dx

= −iα1Ey at x = 0 (10)

dEy
dx

= iα2Ey at x = d (11)

and for the TM case,[
ε0
d

dx

1

ε0

d

dx
+ ω2µε0

]
Hy = β2Hy for 0 < x < d (12)

dHy

dx
= −iα1

ε0
ε1
Hy at x = 0 (13)

dHy

dx
= iα2

ε0
ε2
Hy at x = d (14)
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where we define
αi =

√
ω2µεi − β2 (15)

where the square root is the conventional principal square root with positive real part, producing
outgoing waves in our formulation.

3.1 TE modes

As in [1], we multiply Eq. (9) by E∗y and integrate over the slab to obtain

∫ d

0

[(
β2 − ω2µε0

)
|Ey|2 +

∣∣∣∣dEydx
∣∣∣∣2
]
dx = iα1 |Ey(0)|2 + iα2 |Ey(d)|2 (16)

where we have integrated by parts and simplified the surface terms using Eqs. (10) and (11).
Every quantity of the LHS of Eq. (16) must be real except for β, while the RHS must lie in the
upper half plane by the definition of αi.

The guided modes correspond to real β, for which the LHS of Eq. (16) must purely real.
This forces αi to be purely imaginary and means that β2 ≥ ω2µε1,2. Since we also require
guided modes to be confined (decay to zero at infinity), we have a strict inequality. The RHS is
then strictly negative and forces β2 < ω2µε0. These considerations recover the traditional index
guiding conditions.

The complex β2 eigenvalues must satisfy =β2 > 0 since the RHS of Eq. (16) must strictly
lie in the upper half plane (not including the real axis). This condition immediately precludes
evanescent modes (those which have a decaying exponential dependence in the “propagation”
direction) and non-propagating modes (stationary modes for which β = 0). The conclusion
to be drawn from the preceeding two paragraphs is that the set of all possible leaky mode β
eigenvalues lie in the first quadrant of the complex plane, including the strictly positive imaginary
axis and excluding the real axis. This observation shows that the β corresponding to guided
modes lying on the real axis are zeroes on a different branch of the characteristic equation than
the zeros of leaky mode β. The general guiding condition is then

max(ω2µε1, ω
2µε2) ≤ β2 < ω2µε0 (17)

and each ω2µεi corresponds to a branch point of the characteristic equation on the real axis.
Thus guided modes exist only in structures where all εi are purely real, although they may be
negative. Furthermore, we must have ε0 > 0, but there is no positivity requirement for ε1 and
ε2.

3.2 TM modes∫ d

0

[(
β2

ε0
− ω2µ

)
|Ey|2 +

1

ε0

∣∣∣∣dEydx
∣∣∣∣2
]
dx = i

α1

ε1
|Ey(0)|2 + i

α2

ε2
|Ey(d)|2 (18)

The TM modes show a much richer set of behavior since each term in Eq. (18) can be complex.
We still consider β in the same region of the first quadrant of the complex plane for leaky modes
due to causality.

Guided TM modes require purely imaginary αi and real εi.
If ε1, ε2 > 0, the RHS of Eq. (18) is negative. If ε0 > 0, then guided modes exist for

β2 < ω2µε0. Otherwise if ε0 < 0, then guided modes exist for any positive β.
If ε1, ε2 < 0, the RHS of Eq. (18) is positive. If ε0 > 0, then guided modes exist for
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We now simplify the eigenvalue problem using the general solution. Matching tangential
electric and magnetic fields, we arrive at

A+B = C (19)

Aeikd +Be−ikd = D (20)

ik (A−B) = −iα1C (21)

ik
(
Aeikd −Be−ikd

)
= iα2D (22)

Eliminating C and D,

k (A−B) = −α1 (A+B)

k
(
Aeikd −Be−ikd

)
= α2

(
Aeikd +Be−ikd

)
From which we obtain the eigenvalue equation

e2ikd =
(k + α1) (k + α2)

(k − α1) (k − α2)
(23)

3.3 Guided modes

Guided modes are those where β ∈ R and αi are purely real. In this case, the RHS of Eq. (23)
is exactly unitary, and solutions can exist. To obtain a more traditional eigenvalue equation, we
can write

2kh+mπ = tan−1
=α1

k
+ tan−1

=α2

k
(24)

For the principal branch of the arctangent, the integer m indexes the guided modes starting
from m = 0. Since we expect <αi = 0, let us denote κi = =αi > 0. From the dispersion
relations,

k2 + β2 = ω2µε0 (25)

−κ2 + β2 = ω2µεi (26)

Subtracting gives
k2 + κ2i = ω2µ(ε0 − εi) (27)

3.3.1 Symmetric case

We write the eigenvalue equation as

tan
(
kh+m

π

2

)
=
α0

k
(28)

It is necessary, of course, to also satisfy the dispersion relations

k2 + β2 = ω2µε1 (29)

−α2
0 + β2 = ω2µε0 (30)

Eliminating β,
k2 + α2

0 = ω2µ(ε1 − ε0) (31)

We can re-arrange this equation to isolate α0:

α0

k
=

√
ω2µ(ε1 − ε0)

k2
− 1 (32)
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The textbook treatment of guided modes suggests to simultaneous plot Eqs. (28) and (32) using
axes of α0/k and kh to find solutions kh. As long as ε1 − ε0 > 0, there is at least one guided
mode for m = 0 (which is not the case for an asymmetric guide).

The maximum value of k is kmax = ω
√
µ(ε1 − ε), and therefore number of modes is

N =

⌊
kmaxh

π/2

⌋
+ 1 (33)

The m-th guided mode (indexed starting from 0) must be in the interval mπ
2 ≤ kmh < (m+1)π2 .

These bounds allow for simple and efficient numerical computation of the guided modes.

3.3.2 Normalization

Guided modes are traditionally normalized to unit power, defined as

S =
1

2
< (E×H∗) · ẑ (34)

For the TE polarization, we are only interested in Hx = i
ωµ

∂Ey

∂z . The power in the mode is then

P =
β

2ωµ

∫ ∞
−∞
|Ey|2 dx (35)

3.4 Leaky modes

Leaky modes are the most difficult case to consider, since they correspond to generally complex
αi and β. Much of existing literature considers leaky modes (also called leaky waves, PML
modes, among other names) to be unphysical, citing the exponentially divergent behavior as
|x| → ∞. However a careful analysis reveals that this divergence is caused by the angled
phase fronts of the leaking planewaves in the outer regions. The planewaves propagate with a
directional component along the waveguide, but also with a directional component away from
the waveguide. One may roughly think of the exponential divergence at a particular z0 as due
to the leakage from past times (or from fields from z < z0) when the field in the waveguide was
exponentially larger.

In [1], asymptotic bounds were given for k in the limit that |k| is large. Computationally,
these estimates provide a good initial guess for an iterative numerical method to find the roots
of Eq. (23). Although the numerical understanding of how to solve the eigenvalue equation is
far less developed than in the guided mode case, the current state-of-the-art is quite sufficient
for efficiently computing the leaky modes.

3.4.1 Normalization

In contrast with the guided modes, leaky waves do not have a constant power flux in the
propagation direction due to leakage. Plotting the Poynting vector density in Fig. 2, we see
that in order to normalize the power in the waveguide in a causal way, we should integrate the
propagating power only over the slab. In direct analogy with the guided mode case,

P =
<β
2ωµ

∫ d

0

|Ey|2 dx (36)

If we do not take the real part, we expect the imaginary part of the power to be related to the
outward loss from the slab, but we will not expand on this.
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We may also calculate the unit dissipation per unit propagation length of a leaky mode.
Adding contributions from leakage on both sides of the slab,

Stot =
1

2
< [−Ey(0)Hz(0)∗ + Ey(d)Hz(d)∗] =

1

2ωµ
<
(
α1 |Ey(0)|2 + α2 |Ey(d)|2

)
(37)

Figure 2: Poynting vector density for a guided mode (left) and leaky mode (right). The arrows point
along the Poynting vector direction and follow lines of constant Poynting vector magnitude. The
spacing represents the relative magnitude of the Poynting vector in a region. The fine dashed line
represents the contour used for normalization of each mode, while the long dashed line represents
a particular causal boundary.

3.5 Mode orthogonality

From the discussion of normalization, it appears modes have two relevant quantifiers: the prop-
agating power and the amount of leakage per propagation length. Any inner product we define
between modes must consider both these quantities.

Generalizing to arbitrary field patterns, an inner product should integrate over only the slab.
It must consider the z derivative of the field patterns, as well as the x derivative of the fields
just outside the slab.

3.6 Completeness of modes

The study of the leaky modes is largely motivated by the interest in understanding coupling to
waveguides. The study of modal solutions in the history of physics was primarily motivated by
simplifying time evolution in initial value problems; an initial field pattern can be decomposed
into modes, attaching to each of a respective time harmonic evolution dependent on the modal
eigenvalue, and then superimposing the separate modes. We wish to develop a similar formalism
here for waveguides, except at a constant-frequency, we wish to predict the spatial evolution of
an initial field pattern specified at z0.

We begin by posing the initial value problem of interest. For the slab waveguide, we seek a
solution to (

∇2
xz + ω2µε

)
Ey(x, z) = 0 for z > z0 (38)

Ey(x, z) = g(x) at z = z0 (39)

We assume there exists a set of modes fn(x) with associated βn such that

Ey(x, z = z0) =
∑
n

anfn(x) (40)

∂Ey
∂z

(x, z = z0) = Êy =
∑
n

iβnanfn(x) (41)
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Note that we have chosen to simultaneously expand both the field value in Eq. (40) as well as
its derivative in the propagation direction in Eq. (41). As was noted in [2], this two component
expansion is required for a unique expansion because Eq. (38) is second order and thus Ey(x, z =
z0) and ∂Ey(x, z = z0)/∂z are arbitrary and can be independently specified.

3.7 The adjoint problem

In the Sturm-Liouville theory,
The adjoint problem is the time reversed problem, where all wavevectors are conjugated:[

d2

dx2
+ ω2µε0

]
Ey = β

2
Ey for 0 < x < d (42)

dEy
dx

= −iα1Ey at x = 0 (43)

dEy
dx

= iα2Ey at x = d (44)

The natural inner product is then

〈f | g〉 =

∫ ∞
−∞

f∗g dx (45)

where f∗ is the adjoint (time-reversal) of f .
Our conjecture is that the set of discrete modes (guided and leaky) form a complete basis

in the truncated space of a finite interval containing the slab, for functions supported on the
interval (possibly requiring knowledge of its z derivative). The conjecture makes sense from
causality point of view, since knowledge of the field values outside the interval requires noncausal
knowledge of function values outside the interval.

The reason for this suspicion is that in numerical mode solving with finite differences on a
PML grid, the computed modes are precisely the guided and leaky modes. In the numerical
scheme, these modes are known to form a complete basis (for the vector space of discretized
spatial field values). However, the spatial domain is analytically continued into the complex
plane, so that it is unclear what the field values in the PML regions should represent.
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