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1 Real space function

Suppose we have a function f(7) where ¥ € R%. Let

d
f <F+Zmiai> = f(7) (1)

with m; € Z so that the function is periodic along a lattice with basis vectors a;. Due to the
periodicity, the Wigner-Seitz (WS) cell of the lattice contains the only unique function values.

2 Fourier basis

2.1 Reciprocal lattice

Let us define a set of functions
h(7 k) = exp [zk : f} (2)

First we would like these basis functions to have the periodicity of the lattice with respect to a
fixed k. This requirement cannot be satisfied for all k£, as we shall see. We would like

d
exp [zE <F+ Z mic_ii>] = exp [zE . 77] (3)
i=1
for all m; € Z. Which requires
d
exp !zE Zmid}] =1 (4)
i=1

This is the defining relation for the reciprocal lattice vectors k. Notice that any integer linear
combination of reciprocal lattice vectors must still satisfy eq. (4), hence the name reciprocal lattice.
To see that the set is sparse (that not every k satisfies eq. (4)), we relax eq. (4) to

exp |:ZE . c—i@-] =1 (5)

for all @;. This is equivalent because the @; form a lattice that spans space. We can group all the
d@; into the columns of a square matrix A € R4*?¢, The above condition is then equivalent to

Ak = 277 (6)



where "€ Z4. The k that satisfy this family of matrix equations are obviously countably infinite
since the right hand side is a d dimensional lattice point.

The lattice of reciprocal vectors possess all the symmetries of the real space lattice. Let T
represent a symmetry of the lattice, so that if 77 is a lattice vector, then so is T'7; it maps the lattice

onto itself'!. Any reciprocal lattice vector k satisfies exp [ZE . F} where 7 is any lattice vector. It

must therefore also satisfy exp [ZE . (TF)} . It follows then that exp [Z(TTE) : 77] where the dagger (T)

represents the adjoint?. Since Tk is a reciprocal lattice vector, then Tk is also a reciprocal lattice
vector, and so the set of all k also possesses T' as a symmetry operation®.

2.2 Orthogonality and completeness

These functions are orthonormal with respect to these inner products since they are just plane
waves:

- - 1 /- 1 i N
(h( R b)) = Ve /WS W (7 K h(7; Ry = 6, (7)

<h(F1;E),h(F2,k >

- VBZZh* (713 k)h(Fa; k) = comb(y — ) (8)

where Viygs and Vpyz are the volumes of the ngner—Seltz cell and first Brillouin zones, respectively,
and comb is the Dirac Delta function comb centered on the real space lattice points. Note that in
the first inner product, we integrate over the Wigner-Seitz cell, and we have a Kronecker delta. In
the second, we sum over all reciprocal lattice vectors, and we have a Dirac delta.

I do not have at this time a proof of the completeness of these basis functions.

3 The Fourier Transform

The Fourier Transform on a lattice is simply the expansion of a periodic function into the basis
described previously.

FR) = F@O) = (f0.0R) = [ @ )

Vs Jws

£(7) = FHFE} = (FEL D). = o 3 F (et (10)

VBz “~—=
i

Keep in mind that F(k) is defined only on a discrete lattice of k.

4 An example in 2D

Suppose the lattice we are interested in is defined by basis vectors @, and @s. The reciprocal lattice

basis is 5 5
El = %_’5_ EZ = —%é‘f— (11)
|CL1 ><a2| \al XCL2|

! As a concrete example, in two dimensions, T would be either a 2 x 2 rotation or flip matrix. Since T' must map
the lattice onto itself, |det(T")| = 1.

2Concretely, since T is a real matrix, the adjoint is just its transpose.

3If T is a lattice symmetry, then so is T since TT = £T71.



where (+) indicates a clockwise rotation by 90 degrees. The Fourier Transform on this lattice would
then be

1 1
F(niky + noks) = / / f*(sdy + tdy) exp |:’L (nlskrl - d1 + notks - &'2)} dsdt (12)
0o Jo

f(r |CL1 X a2| Z Z F* pkl —l—qu)exp[ (pkl al —|—qk:2 (12)] (13)
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